Ecological and Physiological Studies of Gymnodinium catenatum in the Mexican Pacific: A Review
نویسندگان
چکیده
This review presents a detailed analysis of the state of knowledge of studies done in Mexico related to the dinoflagellate Gymnodinium catenatum, a paralytic toxin producer. This species was first reported in the Gulf of California in 1939; since then most studies in Mexico have focused on local blooms and seasonal variations. G. catenatum is most abundant during March and April, usually associated with water temperatures between 18 and 25 °C and an increase in nutrients. In vitro studies of G. catenatum strains from different bays along the Pacific coast of Mexico show that this species can grow in wide ranges of salinities, temperatures, and N:P ratios. Latitudinal differences are observed in the toxicity and toxin profile, but the presence of dcSTX, dcGTX2-3, C1, and C2 are usual components. A common characteristic of the toxin profile found in shellfish, when G. catenatum is present in the coastal environment, is the detection of dcGTX2-3, dcSTX, C1, and C2. Few bioassay studies have reported effects in mollusks and lethal effects in mice, and shrimp; however no adverse effects have been observed in the copepod Acartia clausi. Interestingly, genetic sequencing of D1-D2 LSU rDNA revealed that it differs only in one base pair, compared with strains from other regions.
منابع مشابه
Accumulation, Biotransformation, Histopathology and Paralysis in the Pacific Calico Scallop Argopecten ventricosus by the Paralyzing Toxins of the Dinoflagellate Gymnodinium catenatum
The dinoflagellate Gymnodinium catenatum produces paralyzing shellfish poisons that are consumed and accumulated by bivalves. We performed short-term feeding experiments to examine ingestion, accumulation, biotransformation, histopathology, and paralysis in the juvenile Pacific calico scallop Argopecten ventricosus that consume this dinoflagellate. Depletion of algal cells was measured in close...
متن کامل[Red tides in México: a review].
With the purpose to make a review on the red tides occurence at mexican coasts, previous studies were analyzed. Dinoflagellates seem to be the main cause of toxic events mainly Gonyaulax polygramma, Gymnodinium catenatum, Pyrodinium bahamense var. compressum and Ptychodiscus brevis. There are other species which cause red tides but are not toxic. They are: Mesodinium rubrum, Gonyaulax triacanth...
متن کاملGenomics Study of the Exposure Effect of Gymnodinium catenatum, a Paralyzing Toxin Producer, on Crassostrea gigas' Defense System and Detoxification Genes
BACKGROUND Crassostrea gigas accumulates paralytic shellfish toxins (PST) associated with red tide species as Gymnodinium catenatum. Previous studies demonstrated bivalves show variable feeding responses to toxic algae at physiological level; recently, only one study has reported biochemical changes in the transcript level of the genes involved in C. gigas stress response. PRINCIPAL FINDINGS ...
متن کاملBacterial diversity of Gymnodinium catenatum and its relationship to dinoflagellate toxicity
Gymnodinium catenatum Graham (Dinophyceae) is one of several marine dinoflagellates responsible for outbreaks of paralytic shellfish poisoning (PSP), a problem that is considered to be increasing globally. Bacteria associated with these dinoflagellates have been implicated as potentially involved with the production of PSP toxins, and this study sought to identify whether there was a link betwe...
متن کاملThe toxic dinoflagellate Gymnodinium catenatum: an invader in the Mediterranean Sea
The distribution of the toxic dinoflagellate Gymnodinium catenatum Graham in the Mediterranean Sea was once restricted to the eutrophic waters of the Alborán Sea. In September 1999, this taxon was found for first time in the Algerian basin, being the dominant species at subsurface depths (~1 cell mL–1) associated with low salinity waters. The geographical expansion of this exotic species is not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2010